BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 42 2079—2081 (1969)

The Structure Theory of Water. II. The Thermodynamic Properties of Liquid Deuterium Oxide

Kiyoshi Arakawa, Katsutaka Sasaki and Yuko Endo

Research Institute of Applied Electricity, Hokkaido University, Sapporo (Received December 20, 1968)

In the preceding paper¹⁾ (Part I), a statistical thermodynamic theory was successfuly applied to liquid water, based on a two state model which consists of an ice-like structure (class I) and unbonded monomers (class II). The same treatment has been applied to liquid deuterium oxide, with the intention to explain the thermodynamic properties of the liquid and to test the applicability of the two state model.

In the calculation of the partition function (Part I), the two quantities, viz., the energy difference between class I and class II, ε , and the free volume for the molecule in class II, v_f , were used as adjustable parameters. The values of the parameters were estimated to be 3 kcal/mol and $4.0\times10^{-25}~\rm cm^3$ respectively. They are in line with the thermodynamic properties of the liquid water. In the present calculation the same value for v_f has been used, since the dimension of the molecule and the dipolar interactions etc. of D₂O are practically the same as those of H₂O.²⁾

For the magnitude of ε for D_2O a higher value is required than for H_2O , since the energy of sub-limation for the former $(\Delta E_{\rm subi}^{\rm pgo})$: 12.08 kcal/mol) is larger than that of the latter $(\Delta E_{\rm subi}^{\rm ngo})$: 11.65 kcal/mol).²⁾ Considering that the van der Waals interactions between D_2O molecules may be nearly the same as those between H_2O molecules, the magnitude of ε for D_2O is estimated to be 3.4 kcal/mol.

$$\varepsilon_{D_2O} - \varepsilon_{H_2O} = \Delta E_{\text{subl}}^{D_2O} - \Delta E_{\text{subl}}^{H_2O} \tag{1}$$

Concerning the frequencies which have been attributed to intermolecular vibrations of the molecules in class I, a tentative assignment has been made with reference to the data from the infrared and Raman spectroscopy^{3,4}) and also by taking into account the difference in the mass and the principal moments of inertia between D₂O and H₂O molecules.⁵) The ratio of librational frequencies, and that of the principal moments of inertia between D₂O and H₂O are estimated to be 1.38, and 1.91 respectively, according to Swain and Bader.⁵) The values for v_i and A, B, C are given in Table 1.

Table 1. Intermolecular vibrational frequencies and principal moments of inertia for $\mathbf{D_2O}$

Frequency (cm	-1)		
Rotational			
	vibration		
	v_4	v_5	ν_{6}
	340	470	540
Moment of ine	rtia		
\boldsymbol{B}		\boldsymbol{C}	
3.67×10^{-40}	5	$.63 \times$	10-40
	Moment of iner B	v_4	Rotation vibration v_4 v_5 v_4 v_5 v_6 v_8

P. A. Giguére and K. B. Harvey, Can. J. Chem., 34, 798 (1956).

¹⁾ K. Arakawa and K. Sasaki, This Bulletin, 42, 303 (1969).

²⁾ G. Nemethy and H. A. Scheraga, J. Chem. Phys., 41, 680 (1964).

⁴⁾ D. A. Draegert, N. W. B. Stone, B. Curnutte and D. Williams, J. Opt. Soc. Am., 56, 64 (1966).

G. Swain and R. F. Bader, Tetrahedron, 10, 182. (1960).

TABLE	9	THERMODYNAMIC VARIABLES

Temp. (°C)	$A_{ t calc} \ ext{(kcal)}$	$A_{ m obs}$	$E_{ m calc} \ m (kcal)$	$E_{ m obs}$ /mol)	$S_{ m calc} \ m (cal/deg$	$S_{ ext{obs}}$	$(C_v)_{ ext{calc}} \ (ext{cal/deg}$	$(C_v)_{\mathrm{obs}}$ $g \cdot \mathrm{mol})$
4	-1.435	-1.58	3.205	3.04	16.74	16.6	28.88	20.5
10	-1.538	-1.68	3.374	3.15	17.34	17.1	27.64	20.3
20	-1.713	-1.85	3.633	3.36	18.23	17.8	26.64	20.1
30	-1.903	-2.03	3.883	3.57	19.08	18.4	23.17	19.9
40	-2.098	-2.22	4.103	3.77	19.80	19.1	21.05	19.7
50	-2.299	-2.42	4.307	3.97	20.44	19.7	18.94	19.4
60	-2.502	-2.62	4.478	4.17	20.95	20.4	17.26	19.1

Calculation of Thermodynamic Variables.

According to the statistical mechanical theory reported in Part I, calculations of thermodynamic variables for liquid D_2O have been made over the temperature range from 4—60°C, using the values of parameters described above. The calculated values of the Helmholtz energy, A, the internal energy, E, the entropy, E, and the specific heat at constant volume, C_v , are given in Table 2. The results calculated are compared with the experimental data for liquid D_2O and also with the results calculated by Némethy and Scheraga. They are plotted against temperature in Figs. 1—4. The mole fraction E0 of hydrogen bonded portion is calculated and given in Table 3, together with the ratio, E10 of E11 of E12 of E13 of E13 of E14 of E15 of hydrogen bonded portion is calculated and given in Table 3, together with

Table 3. Fraction of hydrogen bonded portion, x

Temp. (°C)	$x_{\mathrm{D}_{2}\mathrm{O}}$	$x_{\rm D_2O}/x_{\rm H_2O}^*$
4	0.514	1.03
10	0.479	1.03
20	0.427	1.03
30	0.378	1.03
40	0.336	1.03
50	0.298	1.02
60	0.268	1.02

^{*} The values of xH20 are those calculated in Part I.

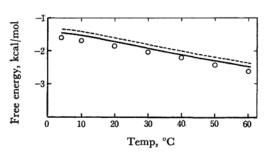


Fig. 1. Helmholtz energy, A, for liquid D₂O. Circle, observed: Solid ine, calculated; Dotted line, Némethy and Scherage²⁾

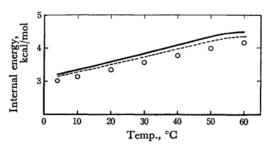


Fig. 2. Internal energy, E, for liquid D₂O. Circle, observed; Solid line, calculated; Dotted line, Némethy and Scheraga²)

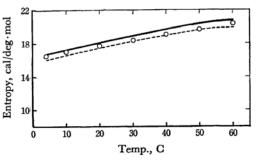


Fig. 3. Entropy, S, for liquid D₂O. Circle, observed; Solid line, calculated; Dotted line, Némethy and Scheraga²⁾

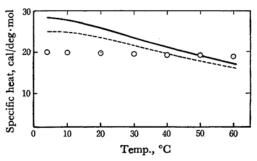


Fig. 4. Specific heat, C, for liquid D₂O. Circle, observed; Solid line, calculated; Dotted line, Némethy and Scheraga²)

As seen in Figs. 1—4, the agreement between calculated and observed values for D_2O is fairly good, except that deviations are seen in the values of C_v . In the present calculation for D_2O , the parameters, ε , v_f , and v_t have been fixed theoretically as compared with those for H_2O . Thus we might say that agreement is satisfactory.^{2,6)}

It seems reasonable from observed data2) that

in liquid D_2O the degree of hydrogen bonding is higher than for liquid H_2O . The ratio, x_{D_2O}/x_{H_2O} given in Table 3 is in line with this view.

We see that the thermodynamical behavior of liquid D_2O is described adequately by using the value of ε_{D_2O} which is larger than ε_{H_2O} . The results support the idea that the bond strength of $O-D\cdots O$ is stronger than that of $O-H\cdots O$.

It is concluded that the two state theory for liquid water (Part I) gives an adequate representation of thermodynamical behaviors of liquid D₂O.

M. R. Thomas and H. A. Scheraga, J. Phys. Chem., 69, 3722 (1965).